Available online at www.sciencedirect.com

Journal of the European Ceramic Society 23 (2003) 2417-2421

www.elsevier.com/locate/jeurceramsoc

Low-temperature sintering and microwave dielectric properties of $Ca(Li_{1/3}Ta_{2/3})O_{3-\delta}$ -CaTiO₃ ceramics

Peng Liu^{a,b,*}, Hirotaka Ogawa^a, Eung Soo Kim^c, Akninori Kan^a

^aFaculty of Science and Technology, Meijo University, add. 1-501 Shiogamachi, Tempaku-ku, Nagoya 468-8502, Japan ^bCollege of Physics and Information Technology, Shaan Xi Normal University, Xian 710062, PR China ^cDepartment of Materials Engineering, Kyonggi University, Suwon 442-760, South Korea

Abstract

New Ca[(Li_{1/3}Ta_{2/3})_{1-x}Ti_x]O_{3- δ} (0.5 \geq x \geq 0) solid solutions with the addition of B₂O₃ were prepared by a conventional oxide mixture method to develop a microwave resonator with a low sintering temperature. It was shown that Ca(Li_{1/3}Ta_{2/3})O_{3- δ} ceramics did not occur as a single phase but rather as a mixture of a perovskite-type phase with a minor amount of Li₃TaO₄. The perovskite phase exhibited 1:2 ordering of Li and Ta on the B-sites. The substitution of Ti⁴⁺ for Li¹⁺ and Ta⁵⁺ stabilized the perovskite phase, destabilized 1:2 ordering, and improved the grain growth of Ca[(Li_{1/3}Ta_{2/3})_{1-x}Ti_x]O_{3- δ} (x=0.2, 0.3) ceramics. As the x composition increased from 0 to 0.5, the dielectric constant, ε , increased from 24 to 48, the quality factor, $Q \times f$, decreased from 42,000 to 11,000 GHz, and the temperature coefficient of resonator frequency, τ_f , increased from a negative value to a positive one. A new microwave dielectric material with ε =35, $Q \times f$ = 22,800 GHz, and τ_f =-4.1 ppm/°C was obtained in the Ca[(Li_{1/3}Ta_{2/3})_{0.7} Ti_{0.3}]O_{3- δ} ceramics doped with B₂O₃ sintered at a temperature as low as 1050 °C. (© 2003 Published by Elsevier Ltd.

Keywords: Dielectric properties; Perovskites; Powders-solid state reaction; Sintering; Ca(Li,Ta)O3

1. Introduction

The rapid growth of the wireless communication industry has created a high demand for the development of ceramic microwave components. These materials are required to have a high dielectric constant, ε , low dielectric loss (high quality factor, $Q \times f$ value), and zero temperature coefficient of resonant frequency, $\tau_f = 0$ ppm/°C, but in addition, low cost and minimization of components are two crucial requirements in commercial applications. For these devices, one of the major topics is developing dielectric materials suitable for co-firing with internal conductors such as Ag (960 °C) or Cu (1050 °C).¹ Because contemporary commercial resonator materials had the sintering temperatures higher than 1300 °C,² there is a considerable interest in the developments of new materials with low sintering temperatures. One favored approach has involved the investigation of the eutectic or glass-forming additives on the properties of the established microwave dielectric

materials. Another approach involved the study of new materials with low melting points. The later method has led to research ceramics such as BiNb(Ta)O₄, TiO₂-TeO₂, and ZnTiO₃.³⁻⁵ Recently, the Li-based Li_{1+x+y} $M_{1-x-3y}Ti_{x+4y}O_3$ (M = Nb, Ta) and Ca(Li_{1/3}Nb_{2/3})O_{3-\delta} ceramics received much attention because of their good dielectric properties and low sintering temperatures, ≤ 1150 °C.^{6,7} Our recent work showed that with the addition of B₂O₃, the sintering temperature of Ca(Li_{1/3} Nb_{2/3})O_{3- δ} ceramics could be reduced to 1000 °C without degrading the microwave dielectric properties.8 In the Ca[(Li_{1/3}Nb_{2/3}),Ti]O_{3- δ} system, with a combination of B₂O₃ and Bi₂O₃, a high-quality microwave dielectric material with $\varepsilon = 43.1$, $Q \times f = 10600$ GHz, and $\tau_f = 10.7$ ppm/°C was obtained at a temperature as low as 920 °C.⁹ Because the valences and chemical characteristics of the Ta are very similar to those of Nb, the Ca[($Li_{1/3}$) $Ta_{2/3})_{1-x}Ti_{x}O_{3-\delta}$ ($0 \le x \le 0.5$) solid solutions were investigated. At the same time, B2O3 powders were added to improve the sinterability of the ceramics. The interrelationships among the phase stability, microstructure, and microwave dielectric properties were investigated in this study.

^{*} Corresponding author. *E-mail address:* liupeng68@hotmail.com (P. Liu).

^{0955-2219/03/\$ -} see front matter \odot 2003 Published by Elsevier Ltd. doi:10.1016/S0955-2219(03)00163-8

2. Experimental procedure

High purity ($\geq 99.9\%$) oxide powders of CaCO₃, Li_2CO_3 , TiO_2 , Ta_2O_5 were used as the starting powders. The powders were weighed according to the compositions of Ca[$(Li_{1/3}Ta_{2/3})_{1-x}Ti_{x}$]O_{3- δ} (0.5 $\geq x \geq 0$) ceramics, and then milled with ZrO₂ balls for 24 hrs in ethanol. The mixtures were dried and calcined at 900 °C for 2 h. The calcined powders were remilled for 24 h again with the additions of B_2O_3 (1.0-6.0 wt.%) powders, and then the powders were pressed into pellets with 10 mm in diameter and 5 mm in thickness under 1500 kg/cm² isostatic pressure. These pellets were subsequently sintered from 1000 to 1200 °C for 4 h in a closed platinum (Pt) box or air. The crystalline phases were analyzed by X-ray powder diffraction (XRPD) using Cu- K_{α} radiation of 2θ from 10 to 70°. The microstructure of the sintered specimens was observed using scanning electron microscope (SEM). The sintered density of the specimens was measured by the Archimede's method and the measurement of dielectric constant (ε) and unloaded quality factor (Q) of the ceramics were performed on TE_{011} mode at the resonant frequency from 8 $\,$ to 12 GHz by using the Hakki-Coleman's dielectric resonator method. The temperature coefficient of resonator frequency (τ_f) was calculated at temperatures ranging from 20 to 80 °C.

3. Results and discussion

XRD spectra for the Ca(Li_{1/3}Ta_{2/3})O_{3- δ} ceramics with B₂O₃ (1.0–6.0 wt.%) sintered at 1050 °C are shown in Fig. 1. The XRD spectra of Ca(Li_{1/3}Ta_{2/3})O_{3- δ} ceramics can be indexed as a CaTiO₃-type phase. The peaks

Fig. 1. XRD spectra for $Ca(Li_{1/3}Ta_{2/3})O_{3-\delta}$ ceramics with the addition of B_2O_3 : (a) 1.0 wt.%, (b) 3.0 wt.%, (c) 6.0 wt.% sintered at 1050 °C, 4 h.

marked with an asterisk "*" shown in Fig. 1(a) and (b) for the specimens with 1.0 and 3.0 wt.%B2O3, respectively, were attributed to the superlattice reflections of 1:2 ordering of Li^{1+} and Ta^{5+} on B site in $Ca(Li_{1/3}Ta_{2/3})$ $O_{3-\delta}$ compound. In addition, Li₃TaO₄ phase marked by "+" (JCPDS number: 180749) was detected in these compositions. When B_2O_3 content increased up to 6.0 wt.%, as shown in the insert of Fig. 1, the XRD peak positions (2θ) of the orthorhombic phase shifted toward higher angles, indicating a decrease of the unit cell volume. For this composition, the 1:2 ordering was disappeared, and the B-enriched phase was appeared. This change in crystal structure and phase relationships could be explained by a vaporization Li from nonstoichiometric Ca(Li_{1/3}Ta_{2/3})O_{3- δ} matrix, resulting in B site compositional modification to the stoichiometric Ca(Li_{1/4}Ta_{3/4})O₃ phase.⁸ This compositional modification process was occurred at the existence of extra liquid phase B₂O₃, which could combined with Li₂O and formed a secondary phase Li₂B₄O₇.⁸ Since the ionic radii of Li^{1+} (coordination number CN=6, 0.076 nm) is larger than that of Ta^{5+} (CN=6, 0.064 nm),¹⁰ the unit cell volume of Ca(Li_{1/4}Ta_{3/4})O₃ phase should be smaller than that of Li-enriched $Ca(Li_{1/3}Ta_{2/3})O_{3-\delta}$ phase.

Table 1 gives the microwave dielectric properties of $Ca(Li_{1/3}Ta_{2/3})O_{3-\delta}$ ceramics sintered at 1175 and 1200 °C in a closed platinum (Pt) box as well as those with B_2O_3 (1.0-6.0 wt.%) sintered at 1050 and 1100 °C in air, respectively. The Ca(Li_{1/3}Ta_{2/3})O_{3-δ} ceramics sintered at 1200 °C in a platinum box have the optimum properties: $\varepsilon = 24$, $Q \times f = 42000$, and $\tau_f = -40$ ppm/°C. It was worth noting that with the addition of B_2O_3 (1.0-3.0 wt.%), the dielectric properties of the ceramics sintered at lower temperatures 1050 and 1100 °C are comparable to the undoped $Ca(Li_{1/3}Ta_{2/3})O_{3-\delta}$ ceramics sintered at 1200 °C in a platinum box. These beneficial effects of B_2O_3 (1.0–3.0 wt.%) on the sinterability and dielectric properties of Ca(Li1/3Ta2/3)O3-8 ceramics are related to the enhancement of the density at the low temperatures by a liquid sintering process. However, 6.0 wt.%B₂O₃ leads to an obvious decrease of the $Q \times f$

Table 1

The microwave dielectric properties of $Ca(Li_{1/3}Ta_{2/3})O_{3-\delta}$ ceramics doped with B_2O_3 (0–6.0 wt.%) sintered at the different conditions

B ₂ O ₃ (wt.%)	<i>T</i> (°C)	ε	Q×f (GHz)	f ₀ (GHz)
0	1175 in a Pt box	23.92	37,500	10.87
	1200 in a Pt box	24	42,300	10.82
1	1050 in air	23.9	32,000	10.628
	1100 in air	24.1	38,900	10.804
3	1050 in air	23.41	33,300	10.911
	1100 in air	24	40,300	10.861
6	1050 in air	23.4	27,500	11.281
	1100 in air	23.33	27,900	10.989

value, due to the disappearance of 1:2 ordering and the formation of the secondary phase shown in Fig. 1(c). These results agree with our previous work on the B_2O_3 -doped Ca(Li_{1/3}Nb_{2/3})O_{3- δ} ceramics.⁸

Since Ca(Li_{1/3}Ta_{2/3})O_{3- δ} ceramics has a large negative τ_f value (τ_f =-40 ppm/°C) which is undesirable in practical applications new ceramics (1-*x*)Ca(Li_{1/3}Ta_{2/3}) O_{3- δ}-*x*CaTiO₃, i.e., Ca[(Li_{1/3}Ta_{2/3})_{1-*x*}Ti_{*x*}]O_{3- δ} (0.5 \geq *x* \geq 0.05) solid solutions were prepared because the τ_f of CaTiO₃ is a large positive value (τ_f = +800 ppm/°C). In this research, it was found that the Ca[(Li_{1/3}Ta_{2/3})_{1-*x*}Ti_{*x*}]O_{3- δ} (0.5 \geq *x* \geq 0.05) ceramics cannot be sintered in

Fig. 2. SEM micrographs for Ca[$(Li_{1/3}Ta_{2/3})_{1-x}Ti_x$]O_{3- δ} ceramics doped with 3.0 wt.% B₂O₃: (a) x=0.0, sintered at 1100 °C, 4 h, (b) x=0.2, (c) 0.3, (d) 0.5, sintered at 1050 °C, 4 h.

Fig. 3. XRD spectra for Ca[$(Li_{1/3}Ta_{2/3})_{1-x}Ti_x$]O_{3- δ} ceramics doped with 3.0 wt.% B₂O₃ sintered at 1050 °C, 4 h: (a) x = 0.05, (b) 0.1, (c) 0.15, (d) 0.2, (e) 0.3, (f) 0.5.

air up to 1200 °C due to a volatility of Li₂O. With the addition of 3.0 wt.% B₂O₃, the densification of Ca[(Li_{1/3} Ta_{2/3})_{1-x}Ti_x]O_{3- δ} ceramics can be easily obtained at temperatures ranging from 1050 to 1100 °C in air for 4 h. As shown in Fig. 2, the Ca(Li_{1/3}Ta_{2/3})O_{3- δ} ceramics with 3.0 wt.% B₂O₃ sintered at 1100 °C showed a dense microstructure with small grain size (0.1–1 um). The ceramics with x=0.2 and 0.3 sintered at 1050 °C had a larger grain size than that of x=0. This implies that the substitution of CaTiO₃ for Ca(Li_{1/3}Ta_{2/3})O_{3- δ} improves the sinterability of Ca[(Li_{1/3}Ta_{2/3})1_{-x}Ti_x]O_{3- δ} and enhances the grain growth. However, because of the higher sintering temperature of CaTiO₃, the substitution of CaTiO₃ up to x=0.5 reduces the sinterability and suppresses the grain growth (Fig. 2(d)).

The XRD spectra for the as sintered Ca[$(\text{Li}_{1/3}\text{Ta}_{2/3})_{1-x}$ Ti_x]O_{3- δ} (0.05 $\leq x \leq$ 0.5) ceramics (Fig. 3) can be identified as a CaTiO₃-type crystal structure. The systematic peak shifts of 2 θ from a low angle to a high angle with increasing x composition indicate a decrease of lattice volume due to the substitution of a smaller ion Ti⁴⁺ (0.0605 nm, coordination number CN=6) for Ta⁵⁺ (CN=6, 0.064 nm) and Li¹⁺ (CN=6, 0.076 nm).¹⁰ Therefore, the Ca[$(\text{Li}_{1/3}\text{Ta}_{2/3})_{1-x}\text{Ti}_x$]O_{3- δ} (0.0 $\leq x \leq$ 0.5) ceramics are complete solid solutions over the entire x composition range. In addition, introducing of CaTiO₃ leads to stabilization of the perovsikite structure due to a larger tolerance factor and a higher electron negativity

Fig. 4. The dielectric constant, ε : (a), quality factor, $Q \times f$ (b), and, the temperature coefficient of the resonant frequency, τ_f (c) as a function of *x* for Ca[(Li_{1/3}Ta_{2/3})_{1-x}Ti_x]O_{3- δ} ceramics doped with 3.0 wt.% B₂O₃.

difference. As shown in Fig. 3, the secondary phase Li_3TaO_4 observed in the undoped $Ca(Li_{1/3}Ta_{2/3})O_{3-\delta}$ did not form in the Ti-bearing ceramics. Moreover, the disappearance of 1:2 ordering for the specimens $x \ge 0.1$ [Fig. 2(b)–(f)] indicates that CaTiO₃ destabilizes the 1:2 ordering structure, which agrees with our previous work in Ca[(Li_{1/3}Nb_{2/3})_{1-x}Ti_x]O_{3-\delta} system.⁹

The apparent density (ρ) and the microwave dielectric properties of Ca[$(Li_{1/3}Ta_{2/3})_{1-x}Ti_x$]O_{3- δ} ceramics with 3.0 wt.% B₂O₃ sintered at temperatures ranging from 1000 to 1150 °C are shown in Fig. 4, and Table 2, respectively. From Fig. 4, as the x composition increases from 0 to 0.5, the dielectric constant, ε , increases linearly from 24 to 48, however, the $O \times f$ value depends not only on the chemical composition x but also on the sintering temperatures. For each composition x, there is an optimum sintering temperature to obtain the highest $Q \times f$ value. Above the optimum sintering temperature, $Q \times f$ value decreased due to a volatility of Li, the formations of extra pores, and a pyrochore phase Ca₂Ta₂O₇ identified with JCPDS number of 44-1008 The $Q \times f$ value of the Ca[(Li_{1/3}Ta_{2/3})_{1-x}Ti_x]O_{3- δ} ceramics decreased extremely at composition around x=0.1, where the 1:2 ordering was disappeared (Fig. 3(b)). In Fig. 4(b), the $Q \times f$ value increased again with the *x* composition at $0.15 \le x \le 0.3$. This enhancement in the $Q \times f$ value may be related to the grain growth of those compositions [Fig. 2(b) and (c)]. As shown in Fig. 4(c), the temperature coefficient of resonant frequency, τ_f , of the Ca[(Li_{1/3}Ta_{2/3})_{1-x}Ti_x]O_{3- δ} solid solutions could be improved by the composition x, and the τ_f value at x = 0.3 is -4.1 ppm/°C. From a practical point of view, the best material is the Ca[$(Li_{1/3}Ta_{2/3})_{0.7}Ti_{0.3}$]O_{3- δ} solid solution, which has the dielectric properties: $\varepsilon = 35$,

Table 2

The apparent density (ρ) and microwave dielectric properties of Ca[(Li_{1/} $_{3}Ta_{2/3})_{1-x}Ti_{x}]O_{3-\delta}$ (0.05 $\leq x$ 0.5) ceramics doped with 3.0 wt.% B₂O₃ sintered at temperatures ranging from 1000 to 1150 °C for 4 h

x	<i>T</i> (°C)	ho (g/cm ³)	f ₀ (GHz)	ε	$Q \times f$ (GHz)	$ au_f$ (ppm/°C)
0.05	1000	5.692	10.277	25.6	18,300	
	1050	5.721	10.853	26.1	22,000	-97
	1100		11.120	26.3	7500	
0.1	1000	5.673	10.217	27.6	9800	
	1050	5.744	10.636	28.4	8900	
	1100	5.78	10.480	28.3	7600	
0.15	1050	5.59	10.471	29.45	20,700	-57.2
	1100	5.33	10.336	28.71	17,200	
	1150		9.898	28.7	8900	
0.2	1050	5.445	9.902	28.4	12,900	-14.67
	1100	5.436	9.388	30.2	22,800	
	1150		9.667	30.1	18,800	
0.3	1050	5.241	9.45	35	22,800	-4.1
	1100	5.287	9.807	35.3	18,600	
0.5	1050	4.535	8.038	45.03	12,300	75
	1100	4.815	8.395	47.6	8100	
	1150		8.202	48	21,000	

 $Q \times f = 22800$ GHz, and $\tau_f = -4.1$ ppm/°C. Compared to the developed materials such as (Zr,Ti)SnO₄ and Ba₂Ti₉O₂₀,² this material has the adequate dielectric properties and a low sintering temperature (1050 °C) for the microwave applications.

4. Conclusions

The new Ca[$(Li_{1/3}Ta_{2/3})_{1-x}Ti_x$]O_{3- δ} (0.5 $\geq x \geq 0$) solid solutions with the addition of B_2O_3 were prepared by a conventional oxide mixture method. The main crystalline phase of Ca(Li_{1/3}Ta_{2/3})O_{3- δ} ceramics is the orthorhombic perovskite structure with 1:2 ordering of Li and Ta on the B-sites. The Ca(Li_{1/3}Ta_{2/3})O_{3- δ} ceramics sintered at 1200 °C in a closed platinum box had the dielectric constant, $\varepsilon = 24$, the quality factor, $Q \times f = 42,000$ GHz, and the temperature coefficient of the resonant frequency, $\tau_f = -40$ ppm/°C. With the additions of B_2O_3 (1.0-3.0 wt.%), the Ca(Li_{1/3}Ta_{2/3}) $O_{3-\delta}$ ceramics can be well sintered at 1100 °C in air without a degradation of the microwave dielectric properties. The Ca[$(Li_{1/3}Ta_{2/3})_{1-x}Ti_x$]O_{3- δ} (0.0 $\leq x$ ≤ 0.5) ceramics are complete solid solutions with an orthorhombic perovskite structure. The substitution of Ti⁴⁺ for Li¹⁺ and Ta⁵⁺ stabilized the perovskite phase, destabilized 1:2 ordered structure, and improved the grain growth of the Ca[$(Li_{1/3}Ta_{2/3})_{1-x}Ti_x$]O_{3- δ} (x=0.2 and 0.3) ceramics. As the x composition increased from 0 to 0.5, ε increased linearly from 24 to 48 and t_f of the $Ca[(Li_{1/3}Ta_{2/3})_{1-x}Ti_{x}]O_{3-\delta}$ ceramics increased from a negative value to a positive one. At an x composition of 0.3, the Ca[(Li_{1/3}Ta_{2/3})_{0.7}Ti_{0.3}]O_{3- δ} ceramics with $\varepsilon = 35$, $Q \times f = 22,800$ GHz, and $\tau_f = -4.1$ ppm/°C were obtained at a temperature as low as 1050 °C.

References

- Kagata, H., Inoue, T., Kameyama, X. and Ishizaki, T., Low-fire microwave dielectric ceramics and multilayer devices with silver internal electrode. In *Ceramics Transactions, Vol. 32, Dielectric Ceramics Proceding, Properties, and Applications*, ed. K. M. Nair, J. P. Guha and A. Okamoto. American Ceramic Society, Westervilie, OH, 1993, pp. 81–90.
- Wolfram, G. and Gobell, H. E., Existence ranges, structural and dielectric properties of Zr_{1-x}Ti_xSn_zO₄ ceramics (x+y+z=2). J. Mat. Res. Bull., 1981, 16, 1455–1463.
- Kagata, H. T. and Inoue, K. J., Low-fire Bismuth-based dielectric ceramics for microwave use. Jpn. J. Appl. Phys, 1992, 31, 3152–3155.
- Udovic, M., Valant, M. and Suvorov, D., Dielectric characterization of ceramics from TiO₂–TeO₂. *Journal of European Ceramic society*, 2001, 21, 17351738.
- Kim, H. T., Kim, S. H., Nahn, S. N. and Byun, J. D., Low-temperature sintering and micowave dielectric properties of zinc metatitanate-rutile mixtures using boron. *Am. Ceram. Soc*, 1999, 823043–823048.
- 6. Borrisevich, A. Y. and Daives, P. K., Microwave dielectric properties of $\text{Li}_{1+x-y}M_{1-x^{-3}y}\text{Ti}_{x+4y}$ O₃(M=Nb⁵⁺, Ta⁵⁺) solid solutions. *Journal of European Ceramic Society*, 2001, **21**, 1719–1722.

- 7. Kim, H. J., Jung, H. J. and Yoon, K. H., Microwave dielectric properties of Ca[$(Li_{1/3}Nb_{2/3})_1$ -Mi_x]O_{3- δ} (M = Sn, Ti) ceramics. *J. Mater. Res.*, 1999, **14**, 3567–3570.
- 8. Liu, P., Kim, E. S. and Yoon, K. H., Low-temperature sintering and microwave dielectric properties of $Ca(Li_{1/3} Nb_{2/3})O_{3-\delta}$ ceramics. *Jpn. J. Appl. Phys*, 2001, **40**, 5769–5773.
- Liu, P., Ogawa, H., Kim, E. S., and Kan, A., Microwave dielectric properties of low temperature sintering Ca[(Li_{1/3}Nb_{2/3}), Ti]O_{3-δ} ceramics. Presentation at the Electroceramics *VIII-2002*, 25–28 August 2002, Rome, Italy.
- Shannon, R. D., Revised effective ionic radii and systematic studies of interatomic distance in halides and chalcogenides. *Acta. Cryst.*, 1976, A32, 751–767.